If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x^2-6=-102
We move all terms to the left:
-8x^2-6-(-102)=0
We add all the numbers together, and all the variables
-8x^2+96=0
a = -8; b = 0; c = +96;
Δ = b2-4ac
Δ = 02-4·(-8)·96
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{3}}{2*-8}=\frac{0-32\sqrt{3}}{-16} =-\frac{32\sqrt{3}}{-16} =-\frac{2\sqrt{3}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{3}}{2*-8}=\frac{0+32\sqrt{3}}{-16} =\frac{32\sqrt{3}}{-16} =\frac{2\sqrt{3}}{-1} $
| 2x+3/4=2 | | y-2+4y+2=180 | | 5t=-60 | | 5(2x+4)=-5(5x-5)-3x | | 12n-9=4n | | Y-2+3y=180 | | 8y-12+4y+8=180 | | -6(9x+5)-3x+4=-408+8 | | (4x+20)°+(7x+5)°=360° | | 5y+7+2y-1=180 | | 8/r+9/r-6=0 | | (4x+20)°+(7x+5)°=180° | | 3y-5+6y+10=180 | | 2x+10=7+3x | | p-5.1=-2.1 | | (19+x)x=x+9 | | 10×^2+4x=32 | | 2−8(−4+3x)=34 | | x^2+19x=x+9 | | 5x^2-10x+61=0 | | 3x+1=50-10 | | c+40=16c-5 | | (x/3)-24=-18 | | 2x–4=4x+8 | | 3x-22x+40=0 | | -6(1-7n)=330 | | i=i | | 4p+40=17p-38 | | 4t-15=3t-2 | | 4m+16=4-2m | | 77y+3=4y-18 | | (y-1)/4=0 |